Impact of cell surface molecules on conjugative transfer of the integrative and conjugative element ICESt3 of Streptococcus thermophilus.

Impact of cell surface molecules on conjugative transfer of the integrative and conjugative element ICESt3 of Streptococcus thermophilus. Appl Environ Microbiol. 2017 Dec 15;: Authors: Dahmane N, Robert E, Deschamps J, Meylheuc T, Delorme C, Briandet R, Leblond-Bourget N, Guédon E, Payot S Abstract Integrative Conjugative Elements (ICEs) are chromosomal elements that are widely distributed in bacterial genomes, hence contributing to genome plasticity, adaptation and evolution of bacteria. Conjugation requires a contact between both the donor and the recipient cells and thus likely depends on the composition of the cell surface envelope. In this work, we investigated the impact of different cell surface molecules including cell surface proteins, wall teichoic acids, lipoteichoic acids and exopolysaccharides on the transfer and acquisition of ICESt3 from Streptococcus thermophilus The transfer of ICESt3 from wild type donor towards mutated recipient cells increased 5- to 400-fold compared to WT when recipients cells were affected in lipoproteins, teichoic acids or exopolysaccharides. These mutants displayed an increased biofilm-forming ability compared to WT suggesting better cell interactions that could contribute to the increase of ICESt3 acquisition. Microscopic observations of S. thermophilus cell surface mutants showed different phenotypes (aggregation in particular) that can also have an impact on conjugation.By contrast, the sa...
Source: Applied and Environmental Microbiology - Category: Microbiology Authors: Tags: Appl Environ Microbiol Source Type: research