Neutrophil granule proteins generate bactericidal ammonia chloramine on reaction with hydrogen peroxide.

Neutrophil granule proteins generate bactericidal ammonia chloramine on reaction with hydrogen peroxide. Free Radic Biol Med. 2017 Oct 18;: Authors: Green JN, Chapman ALP, Bishop CJ, Winterbourn CC, Kettle AJ Abstract The neutrophil enzyme, myeloperoxidase, by converting hydrogen peroxide (H2O2) and chloride to hypochlorous acid (HOCl), provides important defense against ingested micro-organisms. However, there is debate about how efficiently HOCl is produced within the phagosome and whether its reactions with phagosomal constituents influence the killing mechanism. The phagosome is a small space surrounding the ingested organism, into which superoxide, H2O2 and high concentrations of proteins from cytoplasmic granules are released. Previous studies imply that HOCl is produced in the phagosome, but a large proportion should react with proteins before reaching the microbe. To mimic these conditions, we subjected neutrophil granule extract to sequential doses of H2O2. Myeloperoxidase in the extract converted all the H2O2 to HOCl, which reacted with the granule proteins. 3-Chlorotyrosine, protein carbonyls and large amounts of chloramines were produced. At higher doses of H2O2, the extract developed potent bactericidal activity against Staphylococcus aureus. This activity was due to ammonia monochloramine, formed as a secondary product from protein chloramines and dichloramines. Isolated myeloperoxidase and elastase also became bacteric...
Source: Free Radical Biology and Medicine - Category: Biology Authors: Tags: Free Radic Biol Med Source Type: research