Essential role of microRNA-650 in the regulation of B-cell CLL/lymphoma 11B gene expression following transplantation: A novel mechanism behind the acute rejection of renal allografts.

Essential role of microRNA-650 in the regulation of B-cell CLL/lymphoma 11B gene expression following transplantation: A novel mechanism behind the acute rejection of renal allografts. Int J Mol Med. 2017 Oct 17;: Authors: Jin P, Chen H, Xie J, Zhou C, Zhu X Abstract Kidney transplantation is an effective final therapeutic procedure for patients with end-stage kidney failure. Although advanced immunosuppressive therapy is administered following transplantation, certain patients still suffer from acute allograft rejection. MicroRNAs (miRs) have a potential diagnostic and therapeutic value for acute renal allograft rejection; however, their underlying mechanism of action is largely unknown. In the present study, an increased level of miR-650 was identified to be associated with the downregulation of B-cell CLL/lymphoma 11B (BCL11B) expression in acute renal allograft rejection. Furthermore, in vitro study using human renal glomerular endothelial cells (HRGECs) transfected with a miR-650 mimic revealed that key characteristics of acute renal allograft rejection were observed, including apoptosis, the release of cytokines and the chemotaxis of macrophages, while the effects were reduced in HRGECs transfected with a miR-650 inhibitor. The existence of a conserved miR-650 binding site on the 3'-untranslated region of BCL11B mRNA was predicted by computational algorithms and confirmed by a luciferase reporter assay. Knockdown of BCL11B ...
Source: International Journal of Molecular Medicine - Category: Molecular Biology Authors: Tags: Int J Mol Med Source Type: research