Circadian clock components ROR α and Bmal1 mediate the anti-proliferative effect of MLN4924 in osteosarcoma cells.

In this study, we demonstrate that MLN4924 suppresses osteosarcoma cell proliferation by inducing G2/M cell cycle arrest and apoptosis. Our results indicate that MLN4924 stabilizes the retinoid orphan nuclear receptor alpha (RORα) by decreasing its ubiquitination. RNA interference of RORα attenuates the anti-proliferative effect of MLN4924 in U2OS osteosarcoma cells. MLN4924 up-regulates the expression of p21 and Bmal1, two transcriptional targets of RORα. However, p21 plays a minimal role in the anti-proliferative effect of MLN4924 in U2OS osteosarcoma cells. In contrast, Bmal1 suppression by siRNA attenuates the anti-proliferative effect of MLN4924 in U2OS osteosarcoma cells, indicating that the MLN4924-mediated cell growth inhibition is mediated by Bmal1. These results show MLN4924 to be a promising therapeutic agent for the treatment of osteosarcoma and suggest that MLN4924-induced tumor growth inhibition is mediated by the circadian clock components RORα and Bmal1. PMID: 27602774 [PubMed - as supplied by publisher]
Source: Oncotarget - Category: Cancer & Oncology Tags: Oncotarget Source Type: research