Capturing contextual effects in spectro-temporal receptive fields.

Capturing contextual effects in spectro-temporal receptive fields. Hear Res. 2016 Jul 26; Authors: Westö J, May PJ Abstract Spectro-temporal receptive fields (STRFs) are thought to provide descriptive images of the computations performed by neurons along the auditory pathway. However, their validity can be questioned because they rely on a set of assumptions that are probably not fulfilled by real neurons exhibiting contextual effects, that is, nonlinear interactions in the time or frequency dimension that cannot be described with a linear filter. We used a novel approach to investigate how a variety of contextual effects, due to facilitating nonlinear interactions and synaptic depression, affect different STRF models, and if these effects can be captured with a context field (CF). Contextual effects were incorporated in simulated networks of spiking neurons, allowing one to define the true STRFs of the neurons. This, in turn, made it possible to evaluate the performance of each STRF model by comparing the estimations with the true STRFs. We found that currently used STRF models are particularly poor at estimating inhibitory regions. Specifically, contextual effects make estimated STRFs dependent on stimulus density in a contrasting fashion: inhibitory regions are underestimated at lower densities while artificial inhibitory regions emerge at higher densities. The CF was found to provide a solution to this dilemma, but only when it ...
Source: Hearing Research - Category: Audiology Authors: Tags: Hear Res Source Type: research