RIP140 down-regulation alleviates acute lung injury via the inhibition of LPS-induced PPAR γ promoter methylation

In this study, we examined RIP140 and PPARγ protein expression in RAW 264.7 cells and lung tissue following LPS-induced ALI. RIP140 shRNA adenoviral knockdown significantly elevated PPARγ expression, inhibited TNF-α, IL-1β, and IL-6 production in vivo and in vitro. Conversely, treatment with a PPARγ antagonist (GW9662) reversed these outcomes. Furthermore, co-IP showed that endogenous and exogenous RIP140 interacted with DNMT3b in RAW 264.7 cells. Bisulfite conversion, pyrosequencing and activity assays demonstrated that PPARγ promoter methylation levels were increased and that PPARγ transcriptional activity was inhibited following LPS treatment in macrophages. Nevertheless, RIP140 knockdown reduced PPARγ promoter methylation levels and restored its transcriptional activity. These results indicate that RIP140 knockdown can inhibit the production of inflammation mediators and remit ALI via the repression of DNMT3b mediated PPARγ promoter methylation.
Source: Pulmonary Pharmacology and Therapeutics - Category: Respiratory Medicine Source Type: research