Implying Analytic Measures for Unravelling Rheumatoid Arthritis Significant Proteins Through Drug–Target Interaction

Abstract Rheumatoid arthritis (RA) is a systemic autoimmune and inflammatory disease that mainly alters the synovial joints and ultimately leads to their destruction. The involvement of the immune system and its related cells is a basic trademark of autoimmune-associated diseases. The present work focuses on network analysis and its functional characterization to predict novel targets for RA. The interactive model called as rheumatoid arthritis drug–target–protein (RA-DTP) is built of 1727 nodes and 7954 edges followed the power-law distribution. RA-DTP comprised of 20 islands, 55 modules and 123 submodules. Good interactome coverage of target–protein was detected in island 2 (Q-Score 0.875) which includes 673 molecules with 20 modules and 68 submodules. The biological landscape of these modules was examined based on the participation molecules in specific cellular localization, molecular function and biological pathway with favourable p value. Functional characterization and pathway analysis through KEGG, Biocarta and Reactome also showed their involvement in relation to the immune system and inflammatory processes and biological processes such as cell signalling and communication, glucosamine metabolic process, renin–angiotensin system, BCR signals, galactose metabolism, MAPK signalling, complement and coagulation system and NGF signalling pathways. Traffic values and centrality parameters were applied as the selection criteria for identifying po...
Source: Interdisciplinary Sciences, Computational Life Sciences - Category: Bioinformatics Source Type: research