A proposed mechanism for the adverse effects of acebutolol: CES2 and CYP2C19-mediated metabolism and antinuclear antibody production.

A proposed mechanism for the adverse effects of acebutolol: CES2 and CYP2C19-mediated metabolism and antinuclear antibody production. Biochem Pharmacol. 2015 Sep 22; Authors: Muta K, Fukami T, Nakajima M Abstract Acebutolol, a β-adrenergic receptor-blocker, occasionally causes drug-induced lupus erythematosus (DILE). Acebutolol is mainly metabolized to diacetolol. Because metabolic activation has been considered to be related to acebutolol-induced toxicity, we sought to identify the enzymes that are responsible for acebutolol metabolism and investigate their involvement in acebutolol-induced toxicity. By using human liver microsomes (HLM) or intestinal microsomes and recombinant enzymes, we found that diacetolol was produced via hydrolysis by carboxylesterase 2 (CES2) and subsequent acetylation by N-acetyltransferase 2 (NAT2). When acetolol, a hydrolytic metabolite of acebutolol, was incubated with HLM and an NADPH-generating system, a metabolite conjugated with N-acetylcystein was generated. This metabolite was found to be formed by CYP2C19 based on studies with a panel of recombinant cytochrome P450 enzymes and an inhibition study using HLM with tranylcypromine, a CYP2C19 inhibitor. Because antinuclear antibody (ANA) production is associated with DILE, we investigated whether ANA was detected in plasma from mice treated with acebutolol. Administration of acebutolol (100mg/kg, p.o.) to female C57BL/6 mice for 30 days resulted in AN...
Source: Biochemical Pharmacology - Category: Drugs & Pharmacology Authors: Tags: Biochem Pharmacol Source Type: research