Complexity of Compensatory Effects in Nrf1 Knockdown: Linking Undeveloped Anxiety-Like Behavior to Prevented Mitochondrial Dysfunction and Oxidative Stress.

Complexity of Compensatory Effects in Nrf1 Knockdown: Linking Undeveloped Anxiety-Like Behavior to Prevented Mitochondrial Dysfunction and Oxidative Stress. Cell Mol Neurobiol. 2015 Jul 23; Authors: Khalifeh S, Oryan S, Khodagholi F, Digaleh H, Shaerzadeh F, Maghsoudi N, Zarrindast MR Abstract Anxiety-related disorders are complex illnesses that underlying molecular mechanisms need to be understood. Mitochondria stand as an important link between energy metabolism, oxidative stress, and anxiety. The nuclear factor, erythroid-derived 2,-like 1(Nrf1) is a member of the cap "n" collar subfamily of basic region leucine zipper transcription factors and plays the major role in regulating the adaptive response to oxidants and electrophiles within the cell. Here, we injected small interfering RNA (siRNA) targeting Nrf1 in dorsal third ventricle of adult male albino Wistar rats and subsequently examined the effect of this silencing on anxiety-related behavior. We also evaluated apoptotic markers and mitochondrial biogenesis factors, along with electron transport chain activity in three brain regions: hippocampus, amygdala, and prefrontal cortex. Our data revealed that in the group that received Nrf1-siRNA, anxiety-related behavior did not show any significant changes compared to the control group. Caspase-3 did not increase in Nrf1-siRNA-injected rats even though Bax/Bcl2 ratio markedly elevated in Nrf1-knockdown rats in all three mentioned r...
Source: Cellular and Molecular Neurobiology - Category: Cytology Authors: Tags: Cell Mol Neurobiol Source Type: research