Investigation of thermal performance, drying characteristics and environomical analysis: direct flow evacuated tube solar drying of okra

Environ Sci Pollut Res Int. 2024 May 3. doi: 10.1007/s11356-024-33340-8. Online ahead of print.ABSTRACTA direct flow evacuated tube solar dryer (DF_ETSD), a novel drying system, was used for drying pre-treated okra (Abelmoschus esculentus). The performance of DF_ETSD was analysed by determining thermal profiling, dryer and collector efficiency hourly. The maximum 3-day average ambient temperature, collector outlet temperature and solar radiation were 35.6 °C, 66.4 °C and 976 W m-2 respectively. The collector efficiency increased as solar radiation increased over time due to a higher temperature difference between the collector outlet and ambient temperature. The maximum collector and dryer efficiency observed were 30.19% and 21.47%, respectively. A pre-treatment of okra was done in hot water at 70, 80 and 90 °C for 5 min. Okra samples were dried from an initial moisture content of 87.42 ± 1.49% (wb) to a final value of 10.77 ± 1.03% (wb) in 9 h. The pre-treatment temperature of 80 °C is suitable for maximum drying rate, colour retention and rehydration ratio and minimum water activity, which signifies the longer shelf-life of okra. Midilli and Kucuk model was best fitted (highest R2, lowest χ2 and RMSE) for the control and samples pre-treated at 80 °C; however, Verma model was suitably fitted for the sample pre-treated at 70 and 90 °C. The payback period of DF_ETSD was found to be 1.27 years. Environmental analysis shows the CO2 emission and net CO2 mitigation ranged...
Source: Environmental Science and Pollution Research International - Category: Environmental Health Authors: Source Type: research