Sequestration of Pb(II) using channel-like porous spheres of carboxylated graphene oxide-incorporated cellulose acetate@iminodiacetic acid: optimization and mechanism study

Environ Sci Pollut Res Int. 2024 Apr 25. doi: 10.1007/s11356-024-33185-1. Online ahead of print.ABSTRACTThe adsorption property of the costless green cellulose acetate (CA) was boosted by the dual modifications: inner modification by incorporating carboxylated graphene oxide (COOH-GO) into the CA spheres and outer modification by the surface modification of the COOH-GO@CA spheres by iminodiacetic acid (IDA) for removing Pb(II). The adsorption experiments of the Pb(II) proceeded in a batch mode to evaluate the adsorption property of the COOH-GO@CA@IDA spheres. The maximal Pb(II) adsorption capacity attained 613.30 mg/g within 90 min at pH = 5. The removal of Pb(II) reached its equilibrium within 20 min, and the removal % was almost 100% after 30 min at the low Pb(II) concentration. The Pb(II) adsorption mechanism was proposed according to the kinetics and isotherms studies; in addition, the zeta potential (ZP) measurements and X-ray Photoelectron Spectroscopy (XPS) analysis defined the adsorption pathways. By comparing the XPS spectra of the authentic and used COOH-GO@CA@IDA, it was deduced that the contributed chemical adsorption pathways are Lewis acid-base, precipitation, and complexation. The zeta potential (ZP) measurements demonstrated the electrostatic interaction participation in adsorbing the cationic Pb(II) species onto the negatively charged spheres (ZP = 14.2 mV at pH = 5). The unique channel-like pores of the COOH-GO@CA@IDA spheres suggested the pore-filling mecha...
Source: Environmental Science and Pollution Research International - Category: Environmental Health Authors: Source Type: research