HLM chip - A microfluidic approach to study the mechanistic basis of cytochrome P450 inhibition using immobilized human liver microsomes

In this study, we conceptualize a microfluidic approach to mechanistic CYP inhibition studies using human liver microsomes (HLMs) immobilized onto the walls of a polymer micropillar array. We evaluated the feasibility of these HLM chips for CYP inhibition studies by establishing the stability and the enzyme kinetics for a CYP2C9 model reaction under microfluidic flow and determining the half-maximal inhibitory concentrations (IC50) of three human CYP2C9 inhibitors (sulfaphenazole, tienilic acid, miconazole), including evaluation of their inhibition mechanisms and nonspecific microsomal binding on chip. Overall, the enzyme kinetics of CYP2C9 metabolism on the HLM chip (KM = 127 ± 55 µM) was shown to be similar to that of static HLM incubations (KM = 114 ± 14 µM) and the IC50 values toward CYP2C9 derived from the microfluidic assays (sulfaphenazole 0.38 ± 0.09 µM, tienilic acid 3.4 ± 0.6 µM, miconazole 0.54 ± 0.09 µM) correlated well with those determined using current standard IC50 shift assays. Most importantly, the HLM chip could distinguish between reversible (sulfaphenazole) and irreversible (tienilic acid) enzyme inhibitors in a single, automated experiment, indicating the great potential of the HLM chip to simplify current workflows used in mechanistic CYP inhibition studies. Furthermore, the results suggest that the HLM chip can also identify irreversible enzyme inhibitors, which are not necessarily resulting in a time-dependent inhibition (like suicide inhibi...
Source: European Journal of Pharmaceutical Sciences - Category: Drugs & Pharmacology Authors: Source Type: research