Synthesis and characterization of novel guar gum based waste material derived nanocomposite for effective removal of hexabromocyclododecane and lindane

Int J Biol Macromol. 2024 Apr 15:131535. doi: 10.1016/j.ijbiomac.2024.131535. Online ahead of print.ABSTRACTHerein, efficient degradation of hexabromocyclododecane (HBCD) and Lindane, a persistent organic pollutant using guar gum based calcium oxide doped silicon dioxide (GG-CaO@SiO2) has been reported. The nanocomposite was prepared by waste egg shell (CaO) and rice husk (SiO2) was well characterized. The maximum degradation of HBCD and Lindane were observed at 8 mg catalyst loading, basic pH, and 2 mg L-1 of pollutant amount. The photocatalytic performance of GG-CaO@SiO2 for HBCD and Lindane photodegradation was evaluated, and it was found that the rate constant increased in the order of GG-CaO@SiO2 > CaO@SiO2 > GG. GG-CaO@SiO2 demonstrated the of its substantial specific surface area (70 m2 g-1) and synergistic interactions among GG moieties. It achieved HBCD and Lindane elimination rates of 94 % and 90 % by photo-adsorptive degradation within 150 min. Meanwhile, the leaching of HBCD from expanded polystyrene (EPS) materials (0.14 ± 0.05 ppm) underwater with different time intervals and degradation of leachate HBCD were also assessed. The eradication of the pollutant manifested first-order kinetics, with the Langmuir adsorption. LC-MS analysis confirmed that GG-CaO@SiO2 effectively breaks down complex structure toxic pollutants into safer metabolites under natural sunlight exposure. The polymeric GG-CaO@SiO2 nanocomposite showed notable reusability up to ten cycle p...
Source: International Journal of Biological Macromolecules - Category: Biochemistry Authors: Source Type: research