Potentiometric sensing of ibuprofen over ferric oxide doped chitosan grafted polypyrrole-based electrode

Int J Biol Macromol. 2024 Apr 13:131598. doi: 10.1016/j.ijbiomac.2024.131598. Online ahead of print.ABSTRACTThe present work demonstrates the correlation between structure, properties, and self-sensing protocols of in situ prepared ferric oxide doped grafted copolymer composite, comprised of ferric oxide, chitosan, and polypyrrole (α-Fe2O3-en-CHIT-g-PPy) for residual ibuprofen present in natural and artificial samples. The chemical structure, morphology, functionality, and physio-mechanical properties of the composite were determined by Fourier transform infrared spectrometer (FT-IR), Raman spectra, X-ray diffraction (XRD), Scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), Two probe method, and standard ASTM techniques to explore sensing nature. The results confirm the evolution of axially aligned structure against 110 planes of α-Fe2O3 and chemically functionalized expanded polymer matrix during in-situ chemical polymerization of pyrrole, with better porosity, interactivity, and improved electrical conductivity i.e. 7.32 × 10-3 S cm-1. Further, a thin film of prepared composite coated on an ITO glass plate was explored for potentiometric sensing of ibuprofen (IBU) present in artificial and natural samples without the use of any additional energy sources. The observed sensing parameters are the sensing ranging 0.5 μM to 100.0 μM, sensitivity 2.5081 mV μM-1 cm-2, response time 50 s, recovery time 10 s, and stability for 60 days. The sensing mech...
Source: International Journal of Biological Macromolecules - Category: Biochemistry Authors: Source Type: research