Synthetic strategy for the production of electrically polarized polyvinylidene fluoride-trifluoroethylene-co-polymer osseo-functionalized with hydroxyapatite scaffold

J Biomed Mater Res A. 2024 Apr 10. doi: 10.1002/jbm.a.37720. Online ahead of print.ABSTRACTThe physiological mechanism of bone tissue regeneration is intricately organized and involves several cell types, intracellular, and extracellular molecular signaling networks. To overcome the drawbacks of autografts and allografts, a number of synthetically produced scaffolds have been manufactured by integrating ceramics, polymers, and their hybrid-composites. Considering the fact that natural bone is composed primarily of collagen and hydroxyapatite, ceramic-polymer composite materials seem to be the most viable alternative to bone implants. Here, in this experimental study, copolymer PVDF-TrFE has been amalgamated with HA ceramics to produce composite scaffolds as bone implants. In order to fabricate PVDF-TrFE-HA (polyvinylidene fluoride-trifluoroethylene-hydroxyapatite) composite scaffolds, solvent casting-particulate leaching technique was devised. Two scaffold specimens were produced, with different PVDF-TrFE and HA molar ratios (70:30 and 50:50), and then electrically polarized to observe the subsequent polarization impact on the tissue growth and the suppression of bacterial cell proliferation. Both the specimens underwent characterization to analyze their biocompatibility and bactericidal activities. The bacterial culture of Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) bacteria on the composites was studied to understand the antibacterial charac...
Source: Biomed Res - Category: Research Authors: Source Type: research