Antimicrobial macrozones interact with biological macromolecules via two-site binding mode of action: Fluorimetric, NMR and docking studies

Bioorg Chem. 2024 Apr 5;147:107338. doi: 10.1016/j.bioorg.2024.107338. Online ahead of print.ABSTRACTMacrozones are novel conjugates of azithromycin and thiosemicarbazones, which exhibit very good in vitro antibacterial activities against susceptible and some resistant bacterial strains thus showing a potential for further development. A combination of spectrometric (fluorimetry, STD and WaterLOGSY NMR) and molecular docking studies provided insights into atomic details of interactions between selected macrozones and biological receptors such as E. coli ribosome and bovine serum albumin. Fluorimetric measurements revealed binding constants in the micro-molar range while NMR experiments provided data on binding epitopes. It has been demonstrated that both STD and WaterLOGSY gave comparable and consistent results unveiling atoms in intimate contacts with biological receptors. Docking studies pointed towards main interactions between macrozones and E. coli ribosome which included specific π - π stacking and hydrogen bonding interactions with thiosemicarbazone part extending down the ribosome exit tunnel. The results of the docking experiments were in fine correlation with those obtained by NMR and fluorimetry. Our investigation pointed towards a two-site binding mechanism of interactions between macrozones and E. coli ribosome which is the most probable reason for their activity against azithromycin-resistant strains. Much better activity of macrozone-nickel coordinated compou...
Source: Bioorganic Chemistry - Category: Chemistry Authors: Source Type: research