Synthesis, theoretical analysis, and biological properties of a novel tridentate Schiff base palladium (II) complex

Biometals. 2024 Apr 9. doi: 10.1007/s10534-024-00598-x. Online ahead of print.ABSTRACTSchiff base complexes play a crucial role in bioinorganic chemistry. A novel curcumin/phenylalanine tridentate Schiff base ligand and its palladium (II) complex were synthesized so that they were stable in aqueous buffer. The structure of the complex was investigated using a variety of methods, including DFT, NBO analysis, FMOs, and MESP. The interaction of the complex with a plasmid (pUC19) and CT-DNA was studied. The anticancer, antibacterial, and antioxidant activities of the complex were examined. The statistical analysis of the MTT assay was compared using the 1-way ANOVA and Tukey test. Results showed that the complexes were stable in aqueous buffer, pH 8. The extrinsic fluorescence emission of the plasmid and CT-DNA was quenched while interacting with the complex. The complex had an IC50 of 72.47 µM against MCF-7 cells. The ANOVA and Tukey analysis of MTT data demonstrated a statistically significant difference between groups (P < 0.0001). The minimum inhibitory concentrations (MIC) of the complex for E. coli and S. aureus were 300 and 200 µg/mL, with 96.3 and 95.2% biofilm growth inhibition at 250 µg/mL, respectively. The sample concentrations contributing to 50% radical inhibition in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) test for curcumin, ligand, and palladium (II) complex were 33.62, 21.27, and 51.26 µM, respectively. The results suggest that the complex interaction with...
Source: Biometals - Category: Biochemistry Authors: Source Type: research