Solar-powered single-stage distillation and complex conductivity analysis for sustainable domestic wastewater treatment

This study investigates the efficacy of a solar-powered single-stage distillation system for treating domestic wastewater, supplemented with complex conductivity analysis. Domestic wastewater samples were collected from a municipal manhole in El Jadida, Morocco, over a 24-h period. The single-stage distillation system, designed for domestic wastewater treatment, utilizes heat to vaporize the wastewater, followed by condensation to produce pure liquid water. The system demonstrated increased distilled water production with rising temperatures, with domestic wastewater outperforming seawater as a feed water source. Physical and chemical testing of the treated water revealed significant improvements in water quality, meeting, or exceeding Moroccan irrigation water standards. Reductions in parameters such as biological oxygen demand (BOD), chemical oxygen demand (COD), suspended matter, and heavy metals underscored the effectiveness of the distillation process. Complex conductivity analysis provided insights into the electrical properties of untreated wastewater and distilled water. Deconvolution of complex conductivity data using an equivalent electrical circuit model elucidated the electrochemical processes during treatment, highlighting the efficiency of the distillation process. The integration of solar energy addresses water scarcity while promoting environmental sustainability. Complex conductivity analysis enhances process understanding, offering avenues for monitoring and...
Source: Environmental Science and Pollution Research International - Category: Environmental Health Authors: Source Type: research