Mechanical characteristics of waste-printed circuit board-reinforced concrete with silica fume and prediction modelling using ANN

Environ Sci Pollut Res Int. 2024 Apr 1. doi: 10.1007/s11356-024-33099-y. Online ahead of print.ABSTRACTThe use of electronic waste in cement concrete as a fibre additive has proven to be very promising for improving mechanical characteristics and developing sustainable construction materials to reduce the waste dumped in landfills. The following study investigated the effect of electronic waste (printed circuit boards (PCBs)) on the mechanical properties of concrete and predicted the same properties with an appropriate machine learning technique. PCB fibres 45 mm in length and 1.5 mm in width were manufactured and added as fibre additions to two sets of concrete mixes with and without silica fume. A 10% volume replacement of cement was substituted with silica fume (SF) to enhance the characteristics of PCB fibre-reinforced concrete and minimize cement consumption. The study included an evaluation of the fresh properties and mechanical characteristics after a 28-day curing period; thereafter, the results were compared and studied using the Levenberg-Marquardt backpropagation algorithm for predictions. The results show that the mechanical properties improved up to a 5% addition of PCB fibres, resulting in strengths of 63.55 MPa and 69.92 MPa for mixtures of PCB5% and SFPCB5%, respectively. A similar trend was achieved for other properties, such as the tensile and flexural strengths. The results of the ANN model predicted values with R2 values ranging from 0.94 to 0.99, indicati...
Source: Environmental Science and Pollution Research International - Category: Environmental Health Authors: Source Type: research