Trajectories of trace element accumulation in seagrass (Posidonia oceanica) over a decade reveal the footprint of fish farming

Environ Sci Pollut Res Int. 2024 Mar 26. doi: 10.1007/s11356-024-32910-0. Online ahead of print.ABSTRACTTo evaluate the effect of trace element (TE) release from fish farms on seagrass Posidonia oceanica, we compared TE concentrations (As, Cd, Co, Cu, Mn, Mo, Ni, Pb, V, Zn) in shoots near fish cages (Station 'Cage') with those away from them (Station 'Control') in two fish farm facilities (Site 1 and Site 2, North Aegean Sea, Greece). We assessed the present (i.e., 2021, year of sampling) and past (reconstructed period 2012-2020) accumulation of TEs using the living compartments (leaf blades, sheaths, rhizomes, roots, epiphytes) and the dead sheaths, respectively. We also assessed possible seagrass degradation by reconstructing past rhizome production. P. oceanica rhizome production at the 'Cage' stations was up to 50% lower than at the 'Control' stations. Most TE concentrations were higher at 'Cage' stations, but the differences often depended on the seagrass living compartment. Significant differentiation between 'Cage' and 'Control' stations was observed based on the TE concentrations of the dead sheaths during 2012-2020. The contamination level at the 'Cage' stations was mostly moderate in Site 1 and low in Site 2, during the reconstructed period, while an increasing contamination trend was found for certain potential phytotoxic TEs (As, Cu, Cd, Mo, V). Our results emphasize the need for the aquaculture industry to work towards a more ecologically aware approach.PMID:3853...
Source: Environmental Science and Pollution Research International - Category: Environmental Health Authors: Source Type: research