Antifungal activity of ruthenium (II) complex combined with fluconazole against drug-resistant Candida albicans in vitro and its anti-invasive infection in vivo

J Inorg Biochem. 2024 Mar 12;255:112522. doi: 10.1016/j.jinorgbio.2024.112522. Online ahead of print.ABSTRACTWith the abuse of antibiotics and azoles, drug-resistant Candida albicans infections have increased sharply and are spreading rapidly, thereby significantly reducing the antifungal efficacy of existing therapeutics. Several patients die of fungal infections every year. Therefore, there is an urgent requirement to develop new drugs. Accordingly, we synthesized a series of polypyridyl ruthenium (II) complexes having the formula [Ru (NN)2 (bpm)] (PF6)2 (N-N = 2,2'-bipyridine) (bpy, in Ru1), 1,10-phenanthroline (phen, in Ru2), 4,7-diphenyl-1,10-phenanthroline (DIP, in Ru3) (bpm = 2,2'-bipyrimidine) and studied their antifungal activities. Ru3 alone had no effect on the drug-resistant strains, but Ru3 combined with fluconazole (FLC) exhibited significant antifungal activity on drug-resistant strains. A high-dose combination of Ru3 and FLC exhibited direct fungicidal activity by promoting the accumulation of reactive oxygen species and damaging the cellular structure of C. albicans. Additionally, the combination of Ru3 and FLC demonstrated potent antifungal efficacy in vivo in a mouse model of invasive candidiasis. Moreover, the combination significantly improved the survival state of mice, restored their immune systems, and reduced renal injury. These findings could provide ideas for the development of ruthenium (II) complexes as novel antifungal agents for drug-resistant m...
Source: Journal of Inorganic Biochemistry - Category: Biochemistry Authors: Source Type: research