Remote photoplethysmography based on reflected light angle estimation

Objective. In previous studies, the factors affecting the accuracy of imaging photoplethysmography (iPPG) heart rate (HR) measurement have been focused on the light intensity, facial reflection angle, and motion artifacts. However, the factor of specularly reflected light has not been studied in detail. We explored the effect of specularly reflected light on the accuracy of HR estimation and proposed an estimation method for the direction of specularly radiated light. Approach. To study the HR measurement accuracy influenced by specularly reflected light, we control the component of specularly reflected light by controlling its angle. A total of 100 videos from four different reflected light angles were collected, and 25 subjects participated in the dataset collection. We extracted angles and illuminations for 71 facial regions, fitting sample points through interpolation, and selecting the angle corresponding to the maximum weight in the fitted curve as the estimated reflected angle. Main results. The experimental results show that higher specularly reflected light compromises HR estimation accuracy under the same value of light intensity. Notably, at a 60 ° angle, the HR accuracy (ACC) increased by 0.7%, while the signal-to-noise ratio and Pearson correlation coefficient increased by 0.8 dB and 0.035, respectively, compared to 0°. The overall root mean squared error, standard deviation, and mean error of our proposed reflected light angle estimatio n method on the illumin...
Source: Physiological Measurement - Category: Physiology Authors: Source Type: research