Combining CRISPR/Cas9 and natural excision for the precise and complete removal of mobile genetic elements in bacteria

Appl Environ Microbiol. 2024 Mar 18:e0009524. doi: 10.1128/aem.00095-24. Online ahead of print.ABSTRACTHorizontal gene transfer, facilitated by mobile genetic elements (MGEs), is an adaptive evolutionary process that contributes to the evolution of bacterial populations and infectious diseases. A variety of MGEs not only can integrate into the bacterial genome but also can survive or even replicate like plasmids in the cytoplasm, thus requiring precise and complete removal for studying their strategies in benefiting host cells. Existing methods for MGE removal, such as homologous recombination-based deletion and excisionase-based methods, have limitations in effectively eliminating certain MGEs. To overcome these limitations, we developed the Cas9-NE method, which combines the CRISPR/Cas9 system with the natural excision of MGEs. In this approach, a specialized single guide RNA (sgRNA) element is designed with a 20-nucleotide region that pairs with the MGE sequence. This sgRNA is expressed from a plasmid that also carries the Cas9 gene. By utilizing the Cas9-NE method, both the integrative and circular forms of MGEs can be precisely and completely eliminated through Cas9 cleavage, generating MGE-removed cells. We have successfully applied the Cas9-NE method to remove four representative MGEs, including plasmids, prophages, and genomic islands, from Vibrio strains. This new approach not only enables various investigations on MGEs but also has significant implications for the r...
Source: Applied and Environmental Microbiology - Category: Microbiology Authors: Source Type: research