Integrating target-responsive microfluidic-based biosensing chip with smartphone for simultaneous quantification of multiple fluoroquinolones

In this study, the background-free properties of upconversion nanoparticles (UCNPs), the high specificity of the target aptamer (Apt), and the high quenching properties of graphene oxide (GO) were integrated into a microfluidic-based fluorescence biosensing chip (MFBC). Interestingly, the microfluidic channels of the MFBC were prepared by laser-printing technology without the need for complex preparation processes and additional specialized equipment. The target-responsive fluorescence biosensing probes loaded on the MFBC were prepared by self-assembly of the UCNPs-Apt complex with GO based on π-π stacking interactions, which can be used for the detection of the two FQs on a large scale without the need for multi-step manipulations and reactions, resulting in excellent multiplexed, automated and simultaneous sensing capabilities with detection limits as low as 1.84 ng/mL (enrofloxacin) and 2.22 ng/mL (ciprofloxacin). In addition, the MFBC was integrated with a smartphone into a portable device to enable the analysis of a wide range of FQs in the field. This research provides a simple-to-prepare biosensing chip with great potential for field applications and large-scale screening of FQs residues in the food and environment.PMID:38489967 | DOI:10.1016/j.bios.2024.116192
Source: Biosensors and Bioelectronics - Category: Biotechnology Authors: Source Type: research