3D bioprinted photo crosslinkable GelMA/methylcellulose hydrogel mimicking native corneal model with enhanced in vitro cytocompatibility and sustained keratocyte phenotype for stromal regeneration

Int J Biol Macromol. 2024 Feb 28:130472. doi: 10.1016/j.ijbiomac.2024.130472. Online ahead of print.ABSTRACTCorneal transplantation serves as the standard clinical therapy for serious corneal disorders. However, rejection of grafts, significant expenditures, and most crucially, the global donor shortage, may affect the outcome. Recently, 3D bioprinting using biodegradable polymeric materials has become a suitable method for creating tissue replicas with identical architecture. One such most renowned material is GelMA, for its scaffold's three-dimensional structure, biocompatibility, robust mechanics, and favourable optical transmittance. However, GelMA's inadequate viscosity to print at body temperature with better form integrity remains an obstacle. The aim of this work is to create 3D printed GelMA/MC hydrogels for corneal stroma tissue engineering using MC's printability at room temperature and GelMA's irreversible photo cross-linking with UV irradiation. The print speed and pressure conditions for 3D GelMA/MC hydrogels were tuned. Thermal, morphological and physicochemical characteristics were studied for two distinct concentrations of GelMA/MC hydrogels. The hydrogels achieved a transparency of ~78 % (at 700 nm), which was on par with that of the normal cornea (80 %). The in vitro studies conducted using goat corneal stromal cells demonstrated the ability of both hydrogels to promote cell adhesion and proliferation. Expression of Vimentin and keratan sulphate validated t...
Source: International Journal of Biological Macromolecules - Category: Biochemistry Authors: Source Type: research