Strontium ‐loaded 3D intramedullary nail titanium implant for critical‐sized femoral defect in rabbits

In this study, an intramedullary nail shaped three-dimensional (3D)-printed porous titanium implant that is capable of releasing strontium ions was developed through a simple and cost-effective surface modification technique. The feasibility of this implant as a stand-alone solution was evaluated using a rabbit's segmental diaphyseal as a defect model. The strontium-loaded implant exhibited a favorable environment for cell adhesion, and mechanical properties that were commensurate with those of a rabbit's cortical bone. Radiographic, biomechanical, and histological analyses revealed a significantly higher amount of bone ingrowth and superior bone-bonding strength in the strontium-loaded implant when compared to an untreated porous titanium implant. Furthermore, one-year histological observations revealed that the strontium-loaded implant preserved the native-like diaphyseal bone structure without failure. These findings suggest that strontium-releasing 3D-printed titanium implants have the clinical potential to induce the early and efficient repair of critical-sized, load-bearing bone defects.
Source: Journal of Biomedical Materials Research Part B: Applied Biomaterials - Category: Materials Science Authors: Tags: RESEARCH ARTICLE Source Type: research