Developing and Validating a Model of Humeral Stem Primary Stability, Intended for In Silico Clinical Trials

Ann Biomed Eng. 2024 Feb 15. doi: 10.1007/s10439-024-03452-w. Online ahead of print.ABSTRACTIn silico clinical trials (ISCT) can contribute to demonstrating a device's performance via credible computational models applied on virtual cohorts. Our purpose was to establish the credibility of a model for assessing the risk of humeral stem loosening in total shoulder arthroplasty, based on a twofold validation scheme involving both benchtop and clinical validation activities, for ISCT applications. A finite element model computing bone-implant micromotion (benchtop model) was quantitatively compared to a bone foam micromotion test (benchtop comparator) to ensure that the physics of the system was captured correctly. The model was expanded to a population-based approach (clinical model) and qualitatively evaluated based on its ability to replicate findings from a published clinical study (clinical comparator), namely that grit-blasted stems are at a significantly higher risk of loosening than porous-coated stems, to ensure that clinical performance of the stem can be predicted appropriately. Model form sensitivities pertaining to surgical variation and implant design were evaluated. The model replicated benchtop micromotion measurements (52.1 ± 4.3 µm), without a significant impact of the press-fit ("Press-fit": 54.0 ± 8.5 µm, "No press-fit": 56.0 ± 12.0 µm). Applied to a virtual population, the grit-blasted stems (227 ± 78µm) experienced significantly larger micromotions t...
Source: Annals of Biomedical Engineering - Category: Biomedical Engineering Authors: Source Type: research