Modelling of tuberculosis dynamics incorporating indirect transmission of contaminated environment and infectivity of smear-negative individuals: a case study for Xinjiang, China

Acta Trop. 2024 Jan 24:107130. doi: 10.1016/j.actatropica.2024.107130. Online ahead of print.ABSTRACTXinjiang has been one of the high incidence areas of pulmonary tuberculosis (PTB) in China. Besides being infected by direct contacting with active PTB individuals (direct infection), the susceptible would be infected because of the exposure to the environment contaminated by Mycobacterium tuberculosis (indirect infection). Active PTB individuals include not only the smear-positive PTB (PTB+) but also the smear-negative PTB (PTB-) who are infectious due to their ability to release tiny Mycobacterium tuberculosis particles even in the absence of visible Mycobacterium tuberculosis in sputum. By taking account of direct/indirect infection and the difference between PTB+ and PTB- individuals in transmission capability, a periodic dynamical PTB transmission model is proposed. The model is fitted to the newly monthly PTB+ and PTB- cases in Xinjiang from 2008 to 2017 by Markov Chain Monte Carlo algorithm. Moreover, global sensitivity analysis is constructed to address the uncertainty of some key parameters by using Latin hypercube sampling and partial rank correlation coefficient methods. Basic reproduction number R0 for PTB transmission in Xinjiang is estimated to be 2.447 (95% CrI:(1.203, 3.844)), indicating that PTB has been prevalent in Xinjiang over the study period. Our results suggest that reducing the direct/indirect transmission rates, early screening, isolating and treating...
Source: Acta Tropica - Category: Infectious Diseases Authors: Source Type: research