Design, Synthesis, and Biological Evaluation of Water-Soluble Prodrugs of C5-Curcuminoid GO-Y030 Based on Reversible Thia-Michael Reaction

This study describes the development of water-soluble prodrugs of GO-Y030, a potent antitumor C5-curcuminoid, in an attempt to enhance its bioavailability. These prodrugs release the parent compound via a retro-thia-Michael reaction. To endow sufficient hydrophilicity onto GO-Y030 via a single thia-Michael reaction of an aqueous entity, we used a modified glycoconjugate with a thiol group. The water-solubilizing motif was installed on GO-Y030 by the thia-Michael reaction of propargyl-polyethylene glycol (PEG)-thiol and subsequent click chemistry (CuAAC) reaction with 1-glycosyl azide. Turbidity measurements revealed a significantly improved water solubility of the prodrugs, demonstrating that disaccharide conjugates were completely dissolved in water at 100 µM. Their cytotoxicity was comparable to that of the parent compound GO-Y030, indicating the gradual in situ release of GO-Y030. The release of GO-Y030 from GO-Y199 via the retro-thia-Michael reaction was demonstrated through a degradation study in water. Our retro-thia-Michael reaction-based prodrug system can be used for targeting cancer cells.PMID:38296515 | DOI:10.1248/cpb.c23-00775
Source: Chemical and Pharmaceutical Bulletin - Category: Drugs & Pharmacology Authors: Source Type: research