Exploring Inter-Brain Electroencephalogram Patterns for Social Cognitive Assessment During Jigsaw Puzzle Solving

In this study, we developed a jigsaw puzzle-solving game with hyperscanning electroencephalography (EEG) signals recorded to investigate inter-brain activities during social interactions involving cooperation and competition. Participants were recruited and paired into dyads to participate in the multiplayer jigsaw puzzle game with 32-channel EEG signals recorded. The corresponding event-related potentials (ERPs), brain oscillations, and inter-brain functional connectivity were analyzed. The results showed different ERP morphologies of P3 patterns in competitive and cooperative contexts, and brain oscillations in the low-frequency band may be an indicator of social cognitive activities. Furthermore, increased inter-brain functional connectivity in the delta, theta, alpha, and beta frequency bands was observed in the competition mode compared to the cooperation mode. By presenting comparable and valid hyperscanning EEG results alongside those of previous studies using traditional paradigms, this study demonstrates the potential of utilizing hyperscanning techniques in real-life game-playing scenarios to quantitatively assess social cognitive interactions involving cooperation and competition. Our approach offers a promising platform with potential applications in the flexible assessment of psychiatric disorders related to social functioning.
Source: IEE Transactions on Neural Systems and Rehabilitation Engineering - Category: Neuroscience Source Type: research