M-FANet: Multi-Feature Attention Convolutional Neural Network for Motor Imagery Decoding

Motor imagery (MI) decoding methods are pivotal in advancing rehabilitation and motor control research. Effective extraction of spectral-spatial-temporal features is crucial for MI decoding from limited and low signal-to-noise ratio electroencephalogram (EEG) signal samples based on brain-computer interface (BCI). In this paper, we propose a lightweight Multi-Feature Attention Neural Network (M-FANet) for feature extraction and selection of multi-feature data. M-FANet employs several unique attention modules to eliminate redundant information in the frequency domain, enhance local spatial feature extraction and calibrate feature maps. We introduce a training method called Regularized Dropout (R-Drop) to address training-inference inconsistency caused by dropout and improve the model’s generalization capability. We conduct extensive experiments on the BCI Competition IV 2a (BCIC-IV-2a) dataset and the 2019 World robot conference contest-BCI Robot Contest MI (WBCIC-MI) dataset. M-FANet achieves superior performance compared to state-of-the-art MI decoding methods, with 79.28% 4-class classification accuracy (kappa: 0.7259) on the BCIC-IV-2a dataset and 77.86% 3-class classification accuracy (kappa: 0.6650) on the WBCIC-MI dataset. The application of multi-feature attention modules and R-Drop in our lightweight model significantly enhances its performance, validated through comprehensive ablation experiments and visualizations.
Source: IEE Transactions on Neural Systems and Rehabilitation Engineering - Category: Neuroscience Source Type: research