Geostatistical appraisal of water quality, contamination, source distribution of potentially toxic elements (PTEs) in the lower stretches of Subarnarekha River (Odisha), India, and health risk assessment by Monte Carlo simulation approach

AbstractIn the present study, the status of water quality, environmental contamination in the lower stretch of Subarnarekha River with respect to potentially toxic elements (PTEs), its seasonal distribution, and ecotoxicological health impacts were investigated. For this purpose, a combination of indexing approaches and geospatial methods was used. The estimated water quality index (WQI) has shown that the river water falls under “moderate to very poor” category during the pre-monsoon and “moderate to poor” category in the post-monsoon season. The abundance of PTEs (Pb, Cu, Ni, Cd, Fe, and Cr) was on the higher side during the pre-monsoon in comparison with the post-monsoon season. The results of contamination index (Cd) and heavy metal evaluation index (HEI) explain that Subarnarekha River has low-to-moderate levels of contamination with PTEs in the majority of sampling sites. However, HPI indicated that the river water is moderate-to-highly contaminated with PTEs in both seasons. Principal component analysis (PCA) and cluster analysis (CA) reveal that anthropogenic sources are prime contributors to PTEs contamination in Subarnarekha River. The potential non-cancerous health concerns for child and adults due to Cr and Pb in some sampling stations along the river stretch have been observed. The carcinogenic risk (CR) has been established for Cr, Pb, and Cd in Subarnarekha River with Cr (>  10–4) as the most unsafe element. Monte Carlo simulation (MCS) indicates...
Source: Environmental Geochemistry and Health - Category: Environmental Health Source Type: research