Development of a highly sensitive aptamer-based electrochemical sensor for detecting saxitoxin based on K < sub > 3 < /sub > Fe(CN) < sub > 6 < /sub > regulated silver nanoparticles

In this study, we developed a novel aptamer-based electrochemical sensor (AECs) for the sensitive detection of STX based on a K3Fe(CN)6 regulated silver nanoparticles (Ag NPs) modified with aptamer. The AECs was constructed by immobilizing aptamer on Ag NPs surfaces. Under optimized conditions, the AECs showed a linear response towards STX in the range from 0.04 to 0.15 μM with the regression equation of Y = -8.0 + 233.7 X (R2 = 0.9956). The limit of detection (LOD) was calculated to be 1 nM (based on 3 N/S), which is significantly lower than the regulatory limits for STX in seafood. Moreover, the AECs showed excellent sensitivity, reproducibility and stability, as well as the detection in samples with acceptable recovery ranged from 71.2 % to 93.8 %, demonstrating its broad application prospects in detection of STX in seafood samples.SIGNIFICANCE: This work proposed an AECs to achieve sensitive detection of STX. A reaction system of K3Fe(CN)6 etched Ag NPs was introduced and used as the signal source to avoid the instability of the electrochemical signal, which can produce a ratiometric electrochemical signal output mode, improving the stability and sensitivity of electrochemical detection of STX.PMID:38182355 | DOI:10.1016/j.aca.2023.342134
Source: Analytica Chimica Acta - Category: Chemistry Authors: Source Type: research