Stress softening of nanoparticle-crosslinked hydrogels described using a physics-based damage model

J Mech Behav Biomed Mater. 2023 Dec 1;150:106282. doi: 10.1016/j.jmbbm.2023.106282. Online ahead of print.ABSTRACTDespite the promising applications of hydrogels, their poor mechanical properties still greatly limit their further applications. To improve the mechanical properties of hydrogels, various strategies have been proposed. Hydrogels with nanoparticle-crosslinked polymer networks show excellent toughness, self-recovery, and other advantages, and thus have great prospects for use in tissue engineering, artificial muscles, flexible electronics, and other fields. There have been experimental and theoretical studies of its damage. However, the underlying microscale physical mechanisms have not been fully elucidated. Herein, we established a physics-based constitutive model to describe the mechanical behavior of nanoparticle-crosslinked hydrogels under cyclic loading. The deformation-induced damage and the rate-dependent damage were explained by the network alteration and kinetics of chain dissociation/association, respectively. The kinetics dissociation/association theory was modified considering the polymer chains that wind around nanoparticles. The Mullins stress softening and recovery during cyclic loading were described. Cyclic loading tests on nanoparticle-crosslinked hydrogels were carried out to verify the proposed constitutive model. It is demonstrated that the model can well describe the mechanical behavior of nanoparticle-crosslinked hydrogels during cyclic load...
Source: Journal of the Mechanical Behavior of Biomedical Materials - Category: Materials Science Authors: Source Type: research