Somatic mutation patterns at Ig and Non-Ig Loci

DNA Repair (Amst). 2023 Nov 28;133:103607. doi: 10.1016/j.dnarep.2023.103607. Online ahead of print.ABSTRACTThe reverse transcriptase (RT) model of immunoglobulin (Ig) somatic hypermutation (SHM) has received insufficient scientific attention. This is understandable given that DNA deamination mediated by activation-induced deaminase (AID), the initiating step of Ig SHM, has dominated experiments since 2002. We summarise some key history of the RT Ig SHM model dating to 1987. For example, it is now established that DNA polymerase η, the sole DNA repair polymerase involved in post-replication short-patch repair, is an efficient cellular RT. This implies that it is potentially able to initiate target site reverse transcription by RNA-directed DNA repair at AID-induced lesions. Recently, DNA polymerase θ has also been shown to be an efficient cellular RT. Since DNA polymerase θ plays no significant role in Ig SHM, it could serve a similar RNA-dependent DNA polymerase role as DNA polymerase η at non-Ig loci in the putative RNA-templated nucleotide excision repair of bulky adducts and other mutagenic lesions on the transcribed strand. A major yet still poorly recognised consequence of the proposed RT process in Ig SHM is the generation of significant and characteristic strand-biased mutation signatures at both deoxyadenosine/deoxythymidine and deoxyguanosine/deoxycytidine base pairs. In this historical perspective, we highlight how diagnostic strand-biased mutation signatures a...
Source: DNA Repair - Category: Genetics & Stem Cells Authors: Source Type: research