Adaptive β-lactam resistance from an inducible efflux pump that is post-translationally regulated by the DjlA co-chaperone

by Jordan Costafrolaz, Ga ël Panis, Bastien Casu, Silvia Ardissone, Laurence Degeorges, Martin Pilhofer, Patrick H. Viollier The acquisition of multidrug resistance (MDR) determinants jeopardizes treatment of bacterial infections with antibiotics. The tripartite efflux pump AcrAB-NodT confers adaptive MDR in the polarized α-proteobacteriumCaulobacter crescentus via transcriptional induction by first-generation quinolone antibiotics. We discovered that overexpression of AcrAB-NodT by mutation or exogenous inducers confers resistance to cephalosporin and penicillin ( β-lactam) antibiotics. Combining 2-step mutagenesis-sequencing (Mut-Seq) and cephalosporin-resistant point mutants, we dissected how TipR uses a common operator of the divergenttipR andacrAB-nodT promoter for adaptive and/or potentiated AcrAB-NodT-directed efflux. Chemical screening identified diverse compounds that interfere with DNA binding by TipR or induce its dependent proteolytic turnover. We found that long-term induction of AcrAB-NodT deforms the envelope and that homeostatic control by TipR includes co-induction of the DnaJ-like co-chaperone DjlA, boosting pump assembly and/or capacity in anticipation of envelope stress. Thus, the adaptive MDR regulatory circuitry reconciles drug efflux with co-chaperone function fortrans-envelope assemblies and maintenance.
Source: PLoS Biology: Archived Table of Contents - Category: Biology Authors: Source Type: research