Characterization of a novel exopolysaccharide from Acinetobacter rhizosphaerae with ability to enhance the salt stress resistance of rice seedlings

Int J Biol Macromol. 2023 Nov 30:128438. doi: 10.1016/j.ijbiomac.2023.128438. Online ahead of print.ABSTRACTWe here describe the isolation of a novel exopolysaccharide from Acinetobacter rhizosphaerae, named ArEPS. The structure of ArEPS was characterized by analysis of the monosaccharide composition, molecular weight, infrared spectrum, methylation, and nuclear magnetic resonance spectrum. ArEPS was found to be an acidic heteropolysaccharide composed of glucose, galactose, galacturonic acid, glucuronic acid, mannose, and glucosamine; the molecular weight was 1533 kDa. Structural analysis showed that the main-chain structure of ArEPS predominantly comprised 1,3,6-β-Glcp, 1,3,4-α-Galp, 1,2-β-Glcp, 1,4-β-GlcpA, 1,4-β-GalpA, and the side-chain structure comprised 1,6-β-Glcp, 1,3-β-Galp, 1-α-Glcp, 1-β-Galp, 1-α-Manp, 1,4,6-α-Glcp, 1,2,4-β-Glcp, 1,2,3-β-Glcp, and 1,3-β-GlcpN. ArEPS significantly enhanced the tolerance of rice seedlings to salt stress. Specifically, plant height, fresh weight, chlorophyll content, and the K+/Na+ ratio increased by 51 %, 63 %, 29 %, and 162 %, respectively, and the malondialdehyde content was reduced by 45 % after treatment with 100 mg/kg ArEPS compared to treatment with 100 mM NaCl. Finally, based on the quadratic regression between fresh weight and ArEPS addition, the optimal ArEPS addition level was estimated to be 135.12 mg/kg. These results indicate the prospects of ArEPS application in agriculture.PMID:38042318 | DOI:10.1016/j.ij...
Source: International Journal of Biological Macromolecules - Category: Biochemistry Authors: Source Type: research