Thermally stabilized chondroitin sulfate-hemoglobin nanoparticles and their interaction with bioactive compounds

Biophys Chem. 2023 Oct 29;304:107127. doi: 10.1016/j.bpc.2023.107127. Online ahead of print.ABSTRACTThe preparation of nanoparticles (NPs) based on hemoglobin (Hb) with a fully biocompatible methodology is presented. The spontaneous formation of electrostatic complexes of Hb with chondroitin sulfate (CS) at pH 4 in the polysaccharide/protein mass ratio regime where charge neutrality is met leads to spherical nanostructures with monomodal hydrodynamic radii distribution in the range of 50-100 nm. The integrity of the electrostatic complexes is disturbed at pH 7 as the net electric charge of Hb is very low. Treating the NPs at mildly elevated temperature stabilizes them against the pH increase taking advantage of Hb's ability of unfolding and self-associating upon thermal treatment. The NPs surface charge is pH-tunable and changes from positive to strongly negative upon pH increase to 7 proving the presence of negative surface patches of Hb and CS segments in their exterior. The α-helix content of Hb does not change significantly by thermal treatment. The NPs are found to bind the bioactive compounds curcumin and β-carotene and are stable in solutions with high salt content. This investigation introduces a straightforward method to formulate Hb in NPs with possibilities in the nanodelivery of nutrients and drugs.PMID:37952498 | DOI:10.1016/j.bpc.2023.107127
Source: Biophysical Chemistry - Category: Chemistry Authors: Source Type: research