Implementation of cytochrome c proteins and carbon nanotubes hybrids in bioelectrodes towards bioelectrochemical systems applications

Bioprocess Biosyst Eng. 2023 Nov 3. doi: 10.1007/s00449-023-02933-x. Online ahead of print.ABSTRACTMultiheme cytochrome c (Cyt c) can function as a redox protein on electrode to accomplish bioelectrocatalysis. However, the direct electron transfer (DET) between the redox site of Cyt c and electrode is low due to the large coupling distance. A close proximity or a connection pathway from the deeply buried active site to the protein surface can be established by modifying the electrode with carbon nanotubes (CNTs) to improve the DET. Therefore, the isolated Cyt c has been assembled or casted with CNTs by various processes to form Cyt c-CNTs bioelectrodes that can be further applied to biosensing and bioanalysis. These strategies can be transplanted to the fabrication of biofilm-CNTs based electrodes by complexing the out membrane (OM) Cyt c of natural electricigen with CNTs to realize the application of the electrochemical properties of "in vivo" Cyt c to bioelectrochemical systems (BESs). This review intends to highlight the preparation strategies of bioelectrodes that have been well studied in electrochemical biosensors and improving approaches of the DET from the CNTs surface to Cyt c in their hybrids. The efficient fabrication processes of the biofilm-CNTs based electrodes that can be considered as "in vivo" Cyt c-CNTs based electrodes for BES designs are also summarized, aiming to provide an inspiration source and a reference to the related studies of BES downstream.PMID:3...
Source: Bioprocess and Biosystems Engineering - Category: Biomedical Engineering Authors: Source Type: research