Proteomic profile of Cryptococcus gattii biofilm: Metabolic shift and the potential activation of electron chain transport

This study investigated the comparative proteome of C. gattii R265 (VGIIa) grown under planktonic and biofilm conditions. A brief comparison with C. neoformans H99 biofilm and the use of different culture medium and surface were also evaluated. Using Multidimensional Protein Identification Technology (MudPIT), 1819 proteins were identified for both conditions, where 150 (8.2%) were considered differentially regulated (up- or down-regulated and unique in biofilm cells). Overall, the proteomic approach suggests that C. gattii R265 biofilm cells are maintained by the induction of electron transport chain for reoxidation, and by alternative energy metabolites, such as succinate and acetate. SIGNIFICANCE: Since C. gattii is considered a primary pathogen and is one of the most virulent and less susceptible to antifungals, understanding how biofilms are maintained is fundamental to search for new targets to control this important mode of growth that is difficult to eradicate.PMID:37838096 | DOI:10.1016/j.jprot.2023.105022
Source: Journal of Proteomics - Category: Biochemistry Authors: Source Type: research