Comprehensive profiling of the metabolome in corn silage inoculated with or without < em > Lactiplantibacillus plantarum < /em > using different untargeted metabolomics analyses

Arch Anim Nutr. 2023 Sep 19:1-19. doi: 10.1080/1745039X.2023.2247824. Online ahead of print.ABSTRACTSilage fermentation is a complicated biochemical process involving interactions between microbes and metabolites. However, the overall metabolome feature of ensiled forage and its response to lactic acid bacteria inoculation is poorly understood. Hence, in this study metabolome profiles of whole-plant corn silage inoculated with or without Lactiplantibacillus plantarum were characterised via solid-phase microextraction/gas chromatography/mass spectrometry (SPME-GC-MS), gas chromatography/time-of-flight mass spectrometry (GC-TOF-MS), and Liquid chromatography/Q Exactive HFX mass spectrometry (LC-QE-MS/MS) analysis. There were 2087 identified metabolites including 1143 reliably identified metabolites in fresh and ensiled whole-plant corn. After ensiling, the increased metabolites in whole-plant corn were mainly composed of organic acids, volatile organic compounds (VOC), benzene and substituted derivatives, carboxylic acids and derivatives, fatty acyls, flavonoids, indoles and derivatives, organooxygen compounds (including amines and amides), phenols, pyridines and derivatives, and steroids and steroid derivatives, which includes neurotransmitters and metabolites with aromatic, antioxidant, anti-inflammatory, and antimicrobial activities. Phenylacetaldehyde was the most abundant aromatic metabolite after ensiling. L-isoleucine and oxoproline were the major free amino acids in sil...
Source: Archives of Animal Nutrition - Category: Nutrition Authors: Source Type: research