Development of a multiscale mechanistic modeling framework integrating differential cellular kinetics of CAR T ‐cell subsets and immunophenotypes in cancer patients

AbstractChimeric antigen receptor (CAR) T-cell subsets and immunophenotypic composition of the pre-infusion product, as well as their longitudinal changes following infusion, are expected to affect CAR T-cell expansion, persistence, and clinical outcomes. Herein, we sequentially evolved our previously described cellular kinetic-pharmacodynamic (CK-PD) model to incorporate CAR T-cell product-associated attributes by utilizing published preclinical and clinical datasets from two affinity variants (FMC63 and CAT19 scFv) anti-CD19 CAR T-cells. In step 1, a unified cell-level PD model was used to simultaneously characterize the in vitro killing datasets of two CAR T-cells against CD19+ cell lines at varying effector:target ratios. In step 2, an augmented CK-PD model for anti-CD19 CAR T-cells was developed, by integrating CK dataset(s) from two bioanalytical measurements (quantitative polymerase chain reaction and flow cytometry) in patients with cancer. The model described the differential in vivo expansion properties of CAR T-cell subsets. The estimated expansion rate constant was ~1.12-fold higher for CAR+CD8+ cells in comparison to CAR+CD4+ T-cells. In step 3, the model was extended to characterize the disposition of four immunophenotypic populations of CAR T-cells, including stem-cell memory, central memory, effector memory, and effector cells. The model adequately characterized the longitudinal changes in immunophenotypes post anti-CD19 CAR T-cell infusion in pediatric patien...
Source: CPT: Pharmacometrics and Systems Pharmacology - Category: Drugs & Pharmacology Authors: Tags: ARTICLE Source Type: research