Direct interaction between the transmembrane helices stabilize cytochrome P450 2B4 and cytochrome b5 redox complex

Biophys Chem. 2023 Aug 8;301:107092. doi: 10.1016/j.bpc.2023.107092. Online ahead of print.ABSTRACTThe catalytic activity of cytochrome P450 2B4 (CYP2B4) is moderated by its cognate redox partner cytochrome b5 (Cyt-b5). The endoplasmic reticulum (ER) membrane and intermolecular transmembrane (TM) interaction between CYP2B4 and Cyt-b5 regulate the substrate catalysis and the reaction rate. This emphasizes the significance of elucidating the molecular basis of CYP2B4 and Cyt-b5 complexation in a membrane environment to better understand the enzymatic activity of CYP2B4. Our previous solid-state NMR studies revealed the membrane topology of the transmembrane domains of these proteins in the free and complex forms. Here, we show the cross-angle complex formation by the single-pass TM domains of CYP2B4 and Cyt-b5, which is mainly driven by several salt-bridges (E2-R128, R21-D104 and K25-D104), using a multi-microsecond molecular dynamic simulation. Additionally, the leucine-zipper residues (L8, L12, L15, L18 and L19 from CYP2B4) and π-stacking between H23 and F20 residues of CYP2B4 and W110 of Cyt-b5 are identified to stabilize the TM-TM complex in the ER membrane. The simulated tilts of the helices in the free and in the complex are in excellent agreement with solid-state NMR results. The TM-TM packing influences a higher order structural stability when compared to the complex formed by the truncated soluble domains of these two proteins. MM/PBSA based binding free energy estima...
Source: Biophysical Chemistry - Category: Chemistry Authors: Source Type: research