Cannabidiol alleviates perfluorooctane sulfonate-induced macrophage extracellular trap mediate inflammation and fibrosis in mice liver

Ecotoxicol Environ Saf. 2023 Aug 15;263:115374. doi: 10.1016/j.ecoenv.2023.115374. Online ahead of print.ABSTRACTAs a new type of persistent organic pollutant, perfluorooctane sulphonate (PFOS) has received extensive attention worldwide. Cannabidiol (CBD) is a non-psychoactive natural cannabinoid extract that has been proved to have antioxidation, regulation of inflammation and other functions. However, the effects of PFOS on liver injury and whether CBD can alleviate PFOS-induced liver injury are still unclear. Therefore, in this study, we used CBD (10 mg/kg) and/or PFOS (5 mg/kg) to intraperitoneally inject mice for 30 days. We found that PFOS exposure led to inflammatory infiltration in the liver of mice, increased the formation of macrophage extracellular trap (MET), and promoted fibrosis. In vitro, we established a coculture system of RAW264.7, AML12 and LX-2 cells, and treated them with CBD (10 μM) and/or PFOS (200 μM). The results showed that PFOS could also induce the expression of MET, inflammation and fibrosis marker genes in vitro. Coiled-coil domain containing protein 25 (CCD25), as a MET-DNA sensor, was used to investigate its ability to regulate inflammation and fibrosis, we knocked down CCDC25 and its downstream proteins (integrin-linked kinase, ILK) by siRNA technology, and used QNZ to inhibit NF-κB pathway. The results showed that the knockdown of CCDC25 and ILK and the inhibition of NF-κB pathway could inhibit MET-induced inflammation and fibrosis marker...
Source: Ecotoxicology and Environmental Safety - Category: Environmental Health Authors: Source Type: research