RNA-Seq and ATAC-Seq analyses reveal a global transcriptional and chromatin accessibility profiling of γδ T17 differentiation from mouse spleen

Immunobiology. 2023 Jul 5;228(5):152461. doi: 10.1016/j.imbio.2023.152461. Online ahead of print.ABSTRACTIL-17A-producing γδ T cells (γδ T17) are known to play important roles in various autoimmune diseases. However, the molecular mechanisms of γδ T17 differentiation and their functions have not been clarified yet. Here, we sorted IL-17A+ Vγ4, IL-17A- Vγ4, and Vγ1 subsets from mouse spleen by in vitro priming of γδ T17 cells and investigated their differentially expressed genes (DEGs) and differentially accessible regions (DARs) using RNA-seq and ATAC-seq, respectively. Our results showed that DEGs-1 (upregulated genes: 677 and downregulated genes: 821) and DEGs-2 (upregulated genes: 1188 and downregulated genes: 1252) were most closely related to the function and differentiation of peripheral γδ T17. We identified key modules and MCODEs involved in the control of IL-17A+ Vγ4, IL-17A- Vγ4, and Vγ1 subsets using the WGCNA and Metascape analysis. Furthermore, 26 key transcription factors were enriched in three subsets, which contributed to deciphering the potential molecular mechanism driving γδ T17 differentiation. Simultaneously, we conducted chromatin accessibility profiling under γδ T17 differentiation by ATAC-seq. The top six candidate genes were screened for γδ T17 differentiation and function by integrating RNA-seq and ATAC-seq analysis, and the results were further confirmed using RT-qPCR, flow cytometry, and western blot. In addition, the associat...
Source: Immunobiology - Category: Allergy & Immunology Authors: Source Type: research