Automatic Alberta Stroke Program Early Computed Tomographic Scoring in patients with acute ischemic stroke using diffusion-weighted imaging

This study aims to propose a deep learning based automatic evaluation strategy for DWI-ASPECTS to serve as a reference for clinicians in urgent decision making for endovascular thrombectomy. Ten ASPECTS regions are extracted from the DWI series to train the independent classification network for each region, the accurate training labels of which are confirmed by neuroradiologists. Two classical convolutional neural networks (VGG-16 and ResNet-50) are validated. Subsequently, the innovative CBAM-VGG is designed to improve the accurate scoring of four small-volume DWI-ASPECTS regions, including caudate nucleus, lenticular nucleus, internal capsule, and insular lobe. Average F1-score of 0.929 and 0.840 and the average accuracy of 94.75% and 84.99% are obtained when scoring on six cortical regions M1-M6 and four small ASPECTS regions, respectively. In addition, the modified algorithm CBAM-VGG shows a significant improvement in the accuracy of estimating the four ASPECTS regions with smaller volumes. The experimental results demonstrate that the deep learning methods facilitate the efficiency and robustness of automatic DWI-ASPECTS scoring, which can provide a reference for clinical decision-making.Graphical Abstract
Source: Medical and Biological Engineering and Computing - Category: Biomedical Engineering Source Type: research