N < sup > 6 < /sup > -adenosine (m < sup > 6 < /sup > A) mRNA methylation is required for Tribolium castaneum development and reproduction

Insect Biochem Mol Biol. 2023 Jul 6:103985. doi: 10.1016/j.ibmb.2023.103985. Online ahead of print.ABSTRACTGene expression is regulated at various levels, including post-transcriptional mRNA modifications, where m6A methylation is the most common modification of mRNA. The m6A methylation regulates multiple stages of mRNA processing, including splicing, export, decay, and translation. How m6A modification is involved in insect development is not well known. We used the red flour beetle, Tribolium castaneum, as a model insect to identify the role of m6A modification in insect development. RNA interference (RNAi)-mediated knockdown of genes coding for m6A writers (m6A methyltransferase complex, depositing m6A to mRNA) and readers (YTH-domain proteins, recognizing and executing the function of m6A) was conducted. Knockdown of most writers during the larval stage caused a failure of ecdysis during eclosion. The loss of m6A machinery sterilized both females and males by interfering with the functioning of reproductive systems. Females treated with dsMettl3, the main m6A methyltransferase, laid significantly fewer and reduced-size eggs than the control insects. In addition, the embryonic development in eggs laid by dsMettl3 injected females was terminated in the early stages. Knockdown studies also showed that the cytosol m6A reader, YTHDF, is likely responsible for executing the function of m6A modifications during insect development. These data suggest that m6A modifications are c...
Source: Insect Biochemistry and Molecular Biology - Category: Biochemistry Authors: Source Type: research