Molecules, Vol. 28, Pages 5007: Nigella sativa-Manganese Ferrite-Reduced Graphene Oxide-Based Nanomaterial: A Novel Adsorbent for Water Treatment

In this study, a novel nanohybrid composite was fabricated via the incorporation of manganese ferrite (MnFe2O4) nanoparticles into the integrated surface of reduced graphene oxide (rGO) and black cumin seeds (BC). The nanohybrid composite was prepared by a simple co-precipitation method and characterized by several spectroscopic and microscopic techniques. The characterization analysis revealed that the rGO-BC surface was decorated with the MnFe2O4. The strong chemical interaction (via electrostatic and H-bonding) between the integrated surface of rGO-BC and MnFe2O4 nanoparticles has been reported. The prepared composite was highly porous with a heterogeneous surface. The average size of the prepared composite was reported in the ranges of 2.6–7.0 nm. The specific surface area of the prepared composite was calculated to be 50.3 m2/g with a pore volume of 0.061 cc/g and a half pore width of 8.4 Å. As well, many functional sites on the nanohybrid composite surface were also found. This results in the excellent adsorption properties of nanohybrid composite and the effectual elimination of methylene blue dye from water. The nanohybrid was tested for various linear isotherms, such as Langmuir and Freundlich, for the adsorption of methylene blue dye. The Freundlich isotherm was the well-fitted model, proving the adsorption is multilayer. The maximum Langmuir adsorption capacity of nanohybrid composite for methylene blue was reported to be 74.627 mg/g at ...
Source: Molecules - Category: Chemistry Authors: Tags: Article Source Type: research