Three-dimensional culture model to study the biology of vacuolated notochordal cells from mouse nucleus pulposus explants

Eur Cell Mater. 2023 Mar 3;45:72-87. doi: 10.22203/eCM.v045a06.ABSTRACTIntervertebral disc degeneration (IDD) involves cellular changes in the nucleus pulposus (NP) characterised by a decline of the large vacuolated notochordal cells (vNCs) and a rise of smaller vacuole-free mature chondrocyte-like NP cells. An increasing number of studies demonstrate that notochordal cells (NCs) exert disease-modifying effects, establishing that NC-secreted factors are essential for the maintenance of a healthy intervertebral disc (IVD). However, understanding the role of the NCs is hampered by a restricted reserve of native cells and the lack of robust ex vivo cell model. A precise dissection enabled the isolation of NP cells from 4 d post-natal stage mouse spines and their culture into self-organised micromasses. The maintenance of cells' phenotypic characteristics was demonstrated by the presence of intracytoplasmic vacuoles and the immuno-colocalisation of the NC-markers (brachyury; SOX9) after 9 d of culture both in hypoxic and normoxic conditions. A significant increase of the size of the micromass was observed under hypoxia, consistent with a higher level of Ki-67+ immunostained proliferative cells. Furthermore, several proteins of interest for the study of vNCs phenotype (CD44; caveolin-1; aquaporin 2; patched-1) were successfully detected at the plasma membrane of NP-cells cultured in micromasses under hypoxic condition. IHC was performed on mouse IVD sections as control staining. A...
Source: European Cells and Materials - Category: Cytology Authors: Source Type: research