Modelling human lower urinary tract malformations in zebrafish

AbstractAdvances in molecular biology are improving our understanding of the genetic causes underlying human congenital lower urinary tract (i.e., bladder and urethral) malformations. This has recently led to the identification of the first disease-causing variants in the geneBNC2 for isolated lower urinary tract anatomical obstruction (LUTO), and ofWNT3 andSLC20A1 as genes implicated in the pathogenesis of the group of conditions called bladder-exstrophy-epispadias complex (BEEC). Implicating candidate genes from human genetic data requires evidence of their influence on lower urinary tract development and evidence of the found genetic variants ’ pathogenicity. The zebrafish (Danio rerio) has many advantages for use as a vertebrate model organism for the lower urinary tract. Rapid reproduction with numerous offspring, comparable anatomical kidney and lower urinary tract homology, and easy genetic manipulability by Morpholino ®-basedknockdown or CRISPR/Cas editing are among its advantages. In addition, established marker staining for well-known molecules involved in urinary tract development using whole-mount in situ hybridization (WISH) and the usage of transgenic lines expressing fluorescent protein under a tissue-specific promoter allow easy visualization of phenotypic abnormalities of genetically modified zebrafish. Assays to examine the functionality of the excretory organs can also be modeled in vivo with the zebrafish. The approach of using these multiple techniques...
Source: Molecular and Cellular Pediatrics - Category: Cytology Source Type: research